1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480 |
- /*
- * Copyright (C) 2002-2013 The DOSBox Team
- * OPL2/OPL3 emulation library
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /*
- * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman
- * Copyright (C) 1998-2001 Ken Silverman
- * Ken Silverman's official web site: "http://www.advsys.net/ken"
- */
- #include "dosbox_opl.h"
- // per-chip variables
- Bitu chip_num;
- op_type op[MAXOPERATORS];
- Bits int_samplerate;
- Bit8u status;
- Bit32u opl_index;
- #if defined(OPLTYPE_IS_OPL3)
- Bit8u adlibreg[512]; // adlib register set (including second set)
- Bit8u wave_sel[44]; // waveform selection
- #else
- Bit8u adlibreg[256]; // adlib register set
- Bit8u wave_sel[22]; // waveform selection
- #endif
- // vibrato/tremolo increment/counter
- Bit32u vibtab_pos;
- Bit32u vibtab_add;
- Bit32u tremtab_pos;
- Bit32u tremtab_add;
- static fltype recipsamp; // inverse of sampling rate
- static Bit16s wavtable[WAVEPREC*3]; // wave form table
- // vibrato/tremolo tables
- static Bit32s vib_table[VIBTAB_SIZE];
- static Bit32s trem_table[TREMTAB_SIZE*2];
- static Bit32s vibval_const[BLOCKBUF_SIZE];
- static Bit32s tremval_const[BLOCKBUF_SIZE];
- // vibrato value tables (used per-operator)
- static Bit32s vibval_var1[BLOCKBUF_SIZE];
- static Bit32s vibval_var2[BLOCKBUF_SIZE];
- //static Bit32s vibval_var3[BLOCKBUF_SIZE];
- //static Bit32s vibval_var4[BLOCKBUF_SIZE];
- // vibrato/trmolo value table pointers
- static Bit32s *vibval1, *vibval2, *vibval3, *vibval4;
- static Bit32s *tremval1, *tremval2, *tremval3, *tremval4;
- // key scale level lookup table
- static const fltype kslmul[4] = {
- 0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct
- };
- // frequency multiplicator lookup table
- static const fltype frqmul_tab[16] = {
- 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15
- };
- // calculated frequency multiplication values (depend on sampling rate)
- static fltype frqmul[16];
- // key scale levels
- static Bit8u kslev[8][16];
- // map a channel number to the register offset of the modulator (=register base)
- static const Bit8u modulatorbase[9] = {
- 0,1,2,
- 8,9,10,
- 16,17,18
- };
- // map a register base to a modulator operator number or operator number
- #if defined(OPLTYPE_IS_OPL3)
- static const Bit8u regbase2modop[44] = {
- 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set
- 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set
- };
- static const Bit8u regbase2op[44] = {
- 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set
- 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set
- };
- #else
- static const Bit8u regbase2modop[22] = {
- 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8
- };
- static const Bit8u regbase2op[22] = {
- 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17
- };
- #endif
- // start of the waveform
- static Bit32u waveform[8] = {
- WAVEPREC,
- WAVEPREC>>1,
- WAVEPREC,
- (WAVEPREC*3)>>2,
- 0,
- 0,
- (WAVEPREC*5)>>2,
- WAVEPREC<<1
- };
- // length of the waveform as mask
- static Bit32u wavemask[8] = {
- WAVEPREC-1,
- WAVEPREC-1,
- (WAVEPREC>>1)-1,
- (WAVEPREC>>1)-1,
- WAVEPREC-1,
- ((WAVEPREC*3)>>2)-1,
- WAVEPREC>>1,
- WAVEPREC-1
- };
- // where the first entry resides
- static Bit32u wavestart[8] = {
- 0,
- WAVEPREC>>1,
- 0,
- WAVEPREC>>2,
- 0,
- 0,
- 0,
- WAVEPREC>>3
- };
- // envelope generator function constants
- static fltype attackconst[4] = {
- (fltype)(1/2.82624),
- (fltype)(1/2.25280),
- (fltype)(1/1.88416),
- (fltype)(1/1.59744)
- };
- static fltype decrelconst[4] = {
- (fltype)(1/39.28064),
- (fltype)(1/31.41608),
- (fltype)(1/26.17344),
- (fltype)(1/22.44608)
- };
- void operator_advance(op_type* op_pt, Bit32s vib) {
- op_pt->wfpos = op_pt->tcount; // waveform position
-
- // advance waveform time
- op_pt->tcount += op_pt->tinc;
- op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT;
-
- op_pt->generator_pos += generator_add;
- }
- void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) {
- Bit32u c1 = op_pt1->tcount/FIXEDPT;
- Bit32u c3 = op_pt3->tcount/FIXEDPT;
- Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00;
-
- Bit32u noisebit = rand()&1;
-
- Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1);
-
- //Hihat
- Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1)));
- op_pt1->wfpos = inttm*FIXEDPT; // waveform position
- // advance waveform time
- op_pt1->tcount += op_pt1->tinc;
- op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT;
- op_pt1->generator_pos += generator_add;
-
- //Snare
- inttm = ((1+snare_phase_bit) ^ noisebit)<<8;
- op_pt2->wfpos = inttm*FIXEDPT; // waveform position
- // advance waveform time
- op_pt2->tcount += op_pt2->tinc;
- op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT;
- op_pt2->generator_pos += generator_add;
-
- //Cymbal
- inttm = (1+phasebit)<<8;
- op_pt3->wfpos = inttm*FIXEDPT; // waveform position
- // advance waveform time
- op_pt3->tcount += op_pt3->tinc;
- op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT;
- op_pt3->generator_pos += generator_add;
- }
- // output level is sustained, mode changes only when operator is turned off (->release)
- // or when the keep-sustained bit is turned off (->sustain_nokeep)
- void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) {
- if (op_pt->op_state != OF_TYPE_OFF) {
- op_pt->lastcval = op_pt->cval;
- Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT);
-
- // wform: -16384 to 16383 (0x4000)
- // trem : 32768 to 65535 (0x10000)
- // step_amp: 0.0 to 1.0
- // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000)
-
- op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0);
- }
- }
- // no action, operator is off
- void operator_off(op_type* /*op_pt*/) {
- }
- // output level is sustained, mode changes only when operator is turned off (->release)
- // or when the keep-sustained bit is turned off (->sustain_nokeep)
- void operator_sustain(op_type* op_pt) {
- Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
- for (Bit32u ct=0; ct<num_steps_add; ct++) {
- op_pt->cur_env_step++;
- }
- op_pt->generator_pos -= num_steps_add*FIXEDPT;
- }
- // operator in release mode, if output level reaches zero the operator is turned off
- void operator_release(op_type* op_pt) {
- // ??? boundary?
- if (op_pt->amp > 0.00000001) {
- // release phase
- op_pt->amp *= op_pt->releasemul;
- }
-
- Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
- for (Bit32u ct=0; ct<num_steps_add; ct++) {
- op_pt->cur_env_step++; // sample counter
- if ((op_pt->cur_env_step & op_pt->env_step_r)==0) {
- if (op_pt->amp <= 0.00000001) {
- // release phase finished, turn off this operator
- op_pt->amp = 0.0;
- if (op_pt->op_state == OF_TYPE_REL) {
- op_pt->op_state = OF_TYPE_OFF;
- }
- }
- op_pt->step_amp = op_pt->amp;
- }
- }
- op_pt->generator_pos -= num_steps_add*FIXEDPT;
- }
- // operator in decay mode, if sustain level is reached the output level is either
- // kept (sustain level keep enabled) or the operator is switched into release mode
- void operator_decay(op_type* op_pt) {
- if (op_pt->amp > op_pt->sustain_level) {
- // decay phase
- op_pt->amp *= op_pt->decaymul;
- }
-
- Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
- for (Bit32u ct=0; ct<num_steps_add; ct++) {
- op_pt->cur_env_step++;
- if ((op_pt->cur_env_step & op_pt->env_step_d)==0) {
- if (op_pt->amp <= op_pt->sustain_level) {
- // decay phase finished, sustain level reached
- if (op_pt->sus_keep) {
- // keep sustain level (until turned off)
- op_pt->op_state = OF_TYPE_SUS;
- op_pt->amp = op_pt->sustain_level;
- } else {
- // next: release phase
- op_pt->op_state = OF_TYPE_SUS_NOKEEP;
- }
- }
- op_pt->step_amp = op_pt->amp;
- }
- }
- op_pt->generator_pos -= num_steps_add*FIXEDPT;
- }
- // operator in attack mode, if full output level is reached,
- // the operator is switched into decay mode
- void operator_attack(op_type* op_pt) {
- op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0;
-
- Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples
- for (Bit32u ct=0; ct<num_steps_add; ct++) {
- op_pt->cur_env_step++; // next sample
- if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached
- if (op_pt->amp > 1.0) {
- // attack phase finished, next: decay
- op_pt->op_state = OF_TYPE_DEC;
- op_pt->amp = 1.0;
- op_pt->step_amp = 1.0;
- }
- op_pt->step_skip_pos_a <<= 1;
- if (op_pt->step_skip_pos_a==0) op_pt->step_skip_pos_a = 1;
- if (op_pt->step_skip_pos_a & op_pt->env_step_skip_a) { // check if required to skip next step
- op_pt->step_amp = op_pt->amp;
- }
- }
- }
- op_pt->generator_pos -= num_steps_add*FIXEDPT;
- }
- typedef void (*optype_fptr)(op_type*);
- optype_fptr opfuncs[6] = {
- operator_attack,
- operator_decay,
- operator_release,
- operator_sustain, // sustain phase (keeping level)
- operator_release, // sustain_nokeep phase (release-style)
- operator_off
- };
- void change_attackrate(Bitu regbase, op_type* op_pt) {
- Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4;
- if (attackrate) {
- fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp);
- // attack rate coefficients
- op_pt->a0 = (fltype)(0.0377*f);
- op_pt->a1 = (fltype)(10.73*f+1);
- op_pt->a2 = (fltype)(-17.57*f);
- op_pt->a3 = (fltype)(7.42*f);
-
- Bits step_skip = attackrate*4 + op_pt->toff;
- Bits steps = step_skip >> 2;
- op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1;
-
- Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0;
- static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa};
- op_pt->env_step_skip_a = step_skip_mask[step_num];
-
- #if defined(OPLTYPE_IS_OPL3)
- if (step_skip>=60) {
- #else
- if (step_skip>=62) {
- #endif
- op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0
- op_pt->a1 = (fltype)(0.0);
- op_pt->a2 = (fltype)(0.0);
- op_pt->a3 = (fltype)(0.0);
- }
- } else {
- // attack disabled
- op_pt->a0 = 0.0;
- op_pt->a1 = 1.0;
- op_pt->a2 = 0.0;
- op_pt->a3 = 0.0;
- op_pt->env_step_a = 0;
- op_pt->env_step_skip_a = 0;
- }
- }
-
- void change_decayrate(Bitu regbase, op_type* op_pt) {
- Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15;
- // decaymul should be 1.0 when decayrate==0
- if (decayrate) {
- fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp);
- op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2)))));
- Bits steps = (decayrate*4 + op_pt->toff) >> 2;
- op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1;
- } else {
- op_pt->decaymul = 1.0;
- op_pt->env_step_d = 0;
- }
- }
-
- void change_releaserate(Bitu regbase, op_type* op_pt) {
- Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15;
- // releasemul should be 1.0 when releaserate==0
- if (releaserate) {
- fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp);
- op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2)))));
- Bits steps = (releaserate*4 + op_pt->toff) >> 2;
- op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1;
- } else {
- op_pt->releasemul = 1.0;
- op_pt->env_step_r = 0;
- }
- }
-
- void change_sustainlevel(Bitu regbase, op_type* op_pt) {
- Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4;
- // sustainlevel should be 0.0 when sustainlevel==15 (max)
- if (sustainlevel<15) {
- op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05)));
- } else {
- op_pt->sustain_level = 0.0;
- }
- }
-
- void change_waveform(Bitu regbase, op_type* op_pt) {
- #if defined(OPLTYPE_IS_OPL3)
- if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22
- #endif
- // waveform selection
- op_pt->cur_wmask = wavemask[wave_sel[regbase]];
- op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]];
- // (might need to be adapted to waveform type here...)
- }
-
- void change_keepsustain(Bitu regbase, op_type* op_pt) {
- op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0;
- if (op_pt->op_state==OF_TYPE_SUS) {
- if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP;
- } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) {
- if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS;
- }
- }
-
- // enable/disable vibrato/tremolo LFO effects
- void change_vibrato(Bitu regbase, op_type* op_pt) {
- op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0;
- op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0;
- }
-
- // change amount of self-feedback
- void change_feedback(Bitu chanbase, op_type* op_pt) {
- Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14;
- if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8)));
- else op_pt->mfbi = 0;
- }
-
- void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) {
- // frequency
- Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase];
- // block number/octave
- Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7);
- op_pt->freq_high = (Bit32s)((frn>>7)&7);
-
- // keysplit
- Bit32u note_sel = (adlibreg[8]>>6)&1;
- op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)¬e_sel);
- op_pt->toff += (oct<<1);
-
- // envelope scaling (KSR)
- if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2;
-
- // 20+a0+b0:
- op_pt->tinc = (Bit32u)((((fltype)(frn<<oct))*frqmul[adlibreg[ARC_TVS_KSR_MUL+regbase]&15]));
- // 40+a0+b0:
- fltype vol_in = (fltype)((fltype)(adlibreg[ARC_KSL_OUTLEV+regbase]&63) +
- kslmul[adlibreg[ARC_KSL_OUTLEV+regbase]>>6]*kslev[oct][frn>>6]);
- op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14)));
-
- // operator frequency changed, care about features that depend on it
- change_attackrate(regbase,op_pt);
- change_decayrate(regbase,op_pt);
- change_releaserate(regbase,op_pt);
- }
-
- void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) {
- // check if this is really an off-on transition
- if (op_pt->act_state == OP_ACT_OFF) {
- Bits wselbase = regbase;
- if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22
-
- op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT;
-
- // start with attack mode
- op_pt->op_state = OF_TYPE_ATT;
- op_pt->act_state |= act_type;
- }
- }
-
- void disable_operator(op_type* op_pt, Bit32u act_type) {
- // check if this is really an on-off transition
- if (op_pt->act_state != OP_ACT_OFF) {
- op_pt->act_state &= (~act_type);
- if (op_pt->act_state == OP_ACT_OFF) {
- if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL;
- }
- }
- }
-
- void adlib_init(Bit32u samplerate) {
- Bits i, j, oct;
-
- int_samplerate = samplerate;
-
- generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate);
-
-
- memset((void *)adlibreg,0,sizeof(adlibreg));
- memset((void *)op,0,sizeof(op_type)*MAXOPERATORS);
- memset((void *)wave_sel,0,sizeof(wave_sel));
-
- for (i=0;i<MAXOPERATORS;i++) {
- op[i].op_state = OF_TYPE_OFF;
- op[i].act_state = OP_ACT_OFF;
- op[i].amp = 0.0;
- op[i].step_amp = 0.0;
- op[i].vol = 0.0;
- op[i].tcount = 0;
- op[i].tinc = 0;
- op[i].toff = 0;
- op[i].cur_wmask = wavemask[0];
- op[i].cur_wform = &wavtable[waveform[0]];
- op[i].freq_high = 0;
-
- op[i].generator_pos = 0;
- op[i].cur_env_step = 0;
- op[i].env_step_a = 0;
- op[i].env_step_d = 0;
- op[i].env_step_r = 0;
- op[i].step_skip_pos_a = 0;
- op[i].env_step_skip_a = 0;
-
- #if defined(OPLTYPE_IS_OPL3)
- op[i].is_4op = false;
- op[i].is_4op_attached = false;
- op[i].left_pan = 1;
- op[i].right_pan = 1;
- #endif
- }
-
- recipsamp = 1.0 / (fltype)int_samplerate;
- for (i=15;i>=0;i--) {
- frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp);
- }
-
- status = 0;
- opl_index = 0;
-
-
- // create vibrato table
- vib_table[0] = 8;
- vib_table[1] = 4;
- vib_table[2] = 0;
- vib_table[3] = -4;
- for (i=4; i<VIBTAB_SIZE; i++) vib_table[i] = vib_table[i-4]*-1;
-
- // vibrato at ~6.1 ?? (opl3 docs say 6.1, opl4 docs say 6.0, y8950 docs say 6.4)
- vibtab_add = static_cast<Bit32u>(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate);
- vibtab_pos = 0;
-
- for (i=0; i<BLOCKBUF_SIZE; i++) vibval_const[i] = 0;
-
-
- // create tremolo table
- Bit32s trem_table_int[TREMTAB_SIZE];
- for (i=0; i<14; i++) trem_table_int[i] = i-13; // upwards (13 to 26 -> -0.5/6 to 0)
- for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6)
- for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6)
-
- for (i=0; i<TREMTAB_SIZE; i++) {
- // 0.0 .. -26/26*4.8/6 == [0.0 .. -0.8], 4/53 steps == [1 .. 0.57]
- fltype trem_val1=(fltype)(((fltype)trem_table_int[i])*4.8/26.0/6.0); // 4.8db
- fltype trem_val2=(fltype)((fltype)((Bit32s)(trem_table_int[i]/4))*1.2/6.0/6.0); // 1.2db (larger stepping)
-
- trem_table[i] = (Bit32s)(pow(FL2,trem_val1)*FIXEDPT);
- trem_table[TREMTAB_SIZE+i] = (Bit32s)(pow(FL2,trem_val2)*FIXEDPT);
- }
-
- // tremolo at 3.7hz
- tremtab_add = (Bit32u)((fltype)TREMTAB_SIZE * TREM_FREQ * FIXEDPT_LFO / (fltype)int_samplerate);
- tremtab_pos = 0;
-
- for (i=0; i<BLOCKBUF_SIZE; i++) tremval_const[i] = FIXEDPT;
-
-
- static Bitu initfirstime = 0;
- if (!initfirstime) {
- initfirstime = 1;
-
- // create waveform tables
- for (i=0;i<(WAVEPREC>>1);i++) {
- wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC));
- wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC));
- wavtable[i] = wavtable[(i<<1) +WAVEPREC];
- // alternative: (zero-less)
- /* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+1)*PI/WAVEPREC));
- wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+3)*PI/WAVEPREC));
- wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */
- }
- for (i=0;i<(WAVEPREC>>3);i++) {
- wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384;
- wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384;
- }
-
- // key scale level table verified ([table in book]*8/3)
- kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37;
- kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47;
- kslev[7][8] = 48;
- for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41);
- for (j=6;j>=0;j--) {
- for (i=0;i<16;i++) {
- oct = (Bits)kslev[j+1][i]-8;
- if (oct < 0) oct = 0;
- kslev[j][i] = (Bit8u)oct;
- }
- }
- }
-
- }
-
-
-
- void adlib_write(Bitu idx, Bit8u val) {
- Bit32u second_set = idx&0x100;
- adlibreg[idx] = val;
-
- switch (idx&0xf0) {
- case ARC_CONTROL:
- // here we check for the second set registers, too:
- switch (idx) {
- case 0x02: // timer1 counter
- case 0x03: // timer2 counter
- break;
- case 0x04:
- // IRQ reset, timer mask/start
- if (val&0x80) {
- // clear IRQ bits in status register
- status &= ~0x60;
- } else {
- status = 0;
- }
- break;
- #if defined(OPLTYPE_IS_OPL3)
- case 0x04|ARC_SECONDSET:
- // 4op enable/disable switches for each possible channel
- op[0].is_4op = (val&1)>0;
- op[3].is_4op_attached = op[0].is_4op;
- op[1].is_4op = (val&2)>0;
- op[4].is_4op_attached = op[1].is_4op;
- op[2].is_4op = (val&4)>0;
- op[5].is_4op_attached = op[2].is_4op;
- op[18].is_4op = (val&8)>0;
- op[21].is_4op_attached = op[18].is_4op;
- op[19].is_4op = (val&16)>0;
- op[22].is_4op_attached = op[19].is_4op;
- op[20].is_4op = (val&32)>0;
- op[23].is_4op_attached = op[20].is_4op;
- break;
- case 0x05|ARC_SECONDSET:
- break;
- #endif
- case 0x08:
- // CSW, note select
- break;
- default:
- break;
- }
- break;
- case ARC_TVS_KSR_MUL:
- case ARC_TVS_KSR_MUL+0x10: {
- // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication
- int num = idx&7;
- Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff;
- if ((num<6) && (base<22)) {
- Bitu modop = regbase2modop[second_set?(base+22):base];
- Bitu regbase = base+second_set;
- Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
-
- // change tremolo/vibrato and sustain keeping of this operator
- op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)];
- change_keepsustain(regbase,op_ptr);
- change_vibrato(regbase,op_ptr);
-
- // change frequency calculations of this operator as
- // key scale rate and frequency multiplicator can be changed
- #if defined(OPLTYPE_IS_OPL3)
- if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) {
- // operator uses frequency of channel
- change_frequency(chanbase-3,regbase,op_ptr);
- } else {
- change_frequency(chanbase,regbase,op_ptr);
- }
- #else
- change_frequency(chanbase,base,op_ptr);
- #endif
- }
- }
- break;
- case ARC_KSL_OUTLEV:
- case ARC_KSL_OUTLEV+0x10: {
- // key scale level; output rate
- int num = idx&7;
- Bitu base = (idx-ARC_KSL_OUTLEV)&0xff;
- if ((num<6) && (base<22)) {
- Bitu modop = regbase2modop[second_set?(base+22):base];
- Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop;
-
- // change frequency calculations of this operator as
- // key scale level and output rate can be changed
- op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)];
- #if defined(OPLTYPE_IS_OPL3)
- Bitu regbase = base+second_set;
- if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) {
- // operator uses frequency of channel
- change_frequency(chanbase-3,regbase,op_ptr);
- } else {
- change_frequency(chanbase,regbase,op_ptr);
- }
- #else
- change_frequency(chanbase,base,op_ptr);
- #endif
- }
- }
- break;
- case ARC_ATTR_DECR:
- case ARC_ATTR_DECR+0x10: {
- // attack/decay rates
- int num = idx&7;
- Bitu base = (idx-ARC_ATTR_DECR)&0xff;
- if ((num<6) && (base<22)) {
- Bitu regbase = base+second_set;
-
- // change attack rate and decay rate of this operator
- op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]];
- change_attackrate(regbase,op_ptr);
- change_decayrate(regbase,op_ptr);
- }
- }
- break;
- case ARC_SUSL_RELR:
- case ARC_SUSL_RELR+0x10: {
- // sustain level; release rate
- int num = idx&7;
- Bitu base = (idx-ARC_SUSL_RELR)&0xff;
- if ((num<6) && (base<22)) {
- Bitu regbase = base+second_set;
-
- // change sustain level and release rate of this operator
- op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]];
- change_releaserate(regbase,op_ptr);
- change_sustainlevel(regbase,op_ptr);
- }
- }
- break;
- case ARC_FREQ_NUM: {
- // 0xa0-0xa8 low8 frequency
- Bitu base = (idx-ARC_FREQ_NUM)&0xff;
- if (base<9) {
- Bits opbase = second_set?(base+18):base;
- #if defined(OPLTYPE_IS_OPL3)
- if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break;
- #endif
- // regbase of modulator:
- Bits modbase = modulatorbase[base]+second_set;
-
- Bitu chanbase = base+second_set;
-
- change_frequency(chanbase,modbase,&op[opbase]);
- change_frequency(chanbase,modbase+3,&op[opbase+9]);
- #if defined(OPLTYPE_IS_OPL3)
- // for 4op channels all four operators are modified to the frequency of the channel
- if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) {
- change_frequency(chanbase,modbase+8,&op[opbase+3]);
- change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]);
- }
- #endif
- }
- }
- break;
- case ARC_KON_BNUM: {
- if (idx == ARC_PERC_MODE) {
- #if defined(OPLTYPE_IS_OPL3)
- if (second_set) return;
- #endif
-
- if ((val&0x30) == 0x30) { // BassDrum active
- enable_operator(16,&op[6],OP_ACT_PERC);
- change_frequency(6,16,&op[6]);
- enable_operator(16+3,&op[6+9],OP_ACT_PERC);
- change_frequency(6,16+3,&op[6+9]);
- } else {
- disable_operator(&op[6],OP_ACT_PERC);
- disable_operator(&op[6+9],OP_ACT_PERC);
- }
- if ((val&0x28) == 0x28) { // Snare active
- enable_operator(17+3,&op[16],OP_ACT_PERC);
- change_frequency(7,17+3,&op[16]);
- } else {
- disable_operator(&op[16],OP_ACT_PERC);
- }
- if ((val&0x24) == 0x24) { // TomTom active
- enable_operator(18,&op[8],OP_ACT_PERC);
- change_frequency(8,18,&op[8]);
- } else {
- disable_operator(&op[8],OP_ACT_PERC);
- }
- if ((val&0x22) == 0x22) { // Cymbal active
- enable_operator(18+3,&op[8+9],OP_ACT_PERC);
- change_frequency(8,18+3,&op[8+9]);
- } else {
- disable_operator(&op[8+9],OP_ACT_PERC);
- }
- if ((val&0x21) == 0x21) { // Hihat active
- enable_operator(17,&op[7],OP_ACT_PERC);
- change_frequency(7,17,&op[7]);
- } else {
- disable_operator(&op[7],OP_ACT_PERC);
- }
-
- break;
- }
- // regular 0xb0-0xb8
- Bitu base = (idx-ARC_KON_BNUM)&0xff;
- if (base<9) {
- Bits opbase = second_set?(base+18):base;
- #if defined(OPLTYPE_IS_OPL3)
- if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break;
- #endif
- // regbase of modulator:
- Bits modbase = modulatorbase[base]+second_set;
-
- if (val&32) {
- // operator switched on
- enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op)
- enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op)
- #if defined(OPLTYPE_IS_OPL3)
- // for 4op channels all four operators are switched on
- if ((adlibreg[0x105]&1) && op[opbase].is_4op) {
- // turn on chan+3 operators as well
- enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL);
- enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL);
- }
- #endif
- } else {
- // operator switched off
- disable_operator(&op[opbase],OP_ACT_NORMAL);
- disable_operator(&op[opbase+9],OP_ACT_NORMAL);
- #if defined(OPLTYPE_IS_OPL3)
- // for 4op channels all four operators are switched off
- if ((adlibreg[0x105]&1) && op[opbase].is_4op) {
- // turn off chan+3 operators as well
- disable_operator(&op[opbase+3],OP_ACT_NORMAL);
- disable_operator(&op[opbase+3+9],OP_ACT_NORMAL);
- }
- #endif
- }
-
- Bitu chanbase = base+second_set;
-
- // change frequency calculations of modulator and carrier (2op) as
- // the frequency of the channel has changed
- change_frequency(chanbase,modbase,&op[opbase]);
- change_frequency(chanbase,modbase+3,&op[opbase+9]);
- #if defined(OPLTYPE_IS_OPL3)
- // for 4op channels all four operators are modified to the frequency of the channel
- if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) {
- // change frequency calculations of chan+3 operators as well
- change_frequency(chanbase,modbase+8,&op[opbase+3]);
- change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]);
- }
- #endif
- }
- }
- break;
- case ARC_FEEDBACK: {
- // 0xc0-0xc8 feedback/modulation type (AM/FM)
- Bitu base = (idx-ARC_FEEDBACK)&0xff;
- if (base<9) {
- Bits opbase = second_set?(base+18):base;
- Bitu chanbase = base+second_set;
- change_feedback(chanbase,&op[opbase]);
- #if defined(OPLTYPE_IS_OPL3)
- // OPL3 panning
- op[opbase].left_pan = ((val&0x10)>>4);
- op[opbase].right_pan = ((val&0x20)>>5);
- #endif
- }
- }
- break;
- case ARC_WAVE_SEL:
- case ARC_WAVE_SEL+0x10: {
- int num = idx&7;
- Bitu base = (idx-ARC_WAVE_SEL)&0xff;
- if ((num<6) && (base<22)) {
- #if defined(OPLTYPE_IS_OPL3)
- Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[]
- // change waveform
- if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible
- else wave_sel[wselbase] = val&3;
- op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)];
- change_waveform(wselbase,op_ptr);
- #else
- if (adlibreg[0x01]&0x20) {
- // wave selection enabled, change waveform
- wave_sel[base] = val&3;
- op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)];
- change_waveform(base,op_ptr);
- }
- #endif
- }
- }
- break;
- default:
- break;
- }
- }
-
-
- Bitu adlib_reg_read(Bitu port) {
- #if defined(OPLTYPE_IS_OPL3)
- // opl3-detection routines require ret&6 to be zero
- if ((port&1)==0) {
- return status;
- }
- return 0x00;
- #else
- // opl2-detection routines require ret&6 to be 6
- if ((port&1)==0) {
- return status|6;
- }
- return 0xff;
- #endif
- }
-
- void adlib_write_index(Bitu port, Bit8u val) {
- opl_index = val;
- #if defined(OPLTYPE_IS_OPL3)
- if ((port&3)!=0) {
- // possibly second set
- if (((adlibreg[0x105]&1)!=0) || (opl_index==5)) opl_index |= ARC_SECONDSET;
- }
- #endif
- }
-
- static void OPL_INLINE clipit16(Bit32s ival, Bit16s* outval) {
- if (ival<32768) {
- if (ival>-32769) {
- *outval=(Bit16s)ival;
- } else {
- *outval = -32768;
- }
- } else {
- *outval = 32767;
- }
- }
-
-
-
- // be careful with this
- // uses cptr and chanval, outputs into outbufl(/outbufr)
- // for opl3 check if opl3-mode is enabled (which uses stereo panning)
- #undef CHANVAL_OUT
- #if defined(OPLTYPE_IS_OPL3)
- #define CHANVAL_OUT \
- if (adlibreg[0x105]&1) { \
- outbufl[i] += chanval*cptr[0].left_pan; \
- outbufr[i] += chanval*cptr[0].right_pan; \
- } else { \
- outbufl[i] += chanval; \
- }
- #else
- #define CHANVAL_OUT \
- outbufl[i] += chanval;
- #endif
-
- void adlib_getsample(Bit16s* sndptr, Bits numsamples) {
- Bits i, endsamples;
- op_type* cptr;
-
- Bit32s outbufl[BLOCKBUF_SIZE];
- #if defined(OPLTYPE_IS_OPL3)
- // second output buffer (right channel for opl3 stereo)
- Bit32s outbufr[BLOCKBUF_SIZE];
- #endif
-
- // vibrato/tremolo lookup tables (global, to possibly be used by all operators)
- Bit32s vib_lut[BLOCKBUF_SIZE];
- Bit32s trem_lut[BLOCKBUF_SIZE];
-
- Bits samples_to_process = numsamples;
-
- for (Bits cursmp=0; cursmp<samples_to_process; cursmp+=endsamples) {
- endsamples = samples_to_process-cursmp;
- if (endsamples>BLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE;
-
- memset((void*)&outbufl,0,endsamples*sizeof(Bit32s));
- #if defined(OPLTYPE_IS_OPL3)
- // clear second output buffer (opl3 stereo)
- if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s));
- #endif
-
- // calculate vibrato/tremolo lookup tables
- Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching
- for (i=0;i<endsamples;i++) {
- // cycle through vibrato table
- vibtab_pos += vibtab_add;
- if (vibtab_pos/FIXEDPT_LFO>=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO;
- vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents
-
- // cycle through tremolo table
- tremtab_pos += tremtab_add;
- if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO;
- if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO];
- else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO];
- }
-
- if (adlibreg[ARC_PERC_MODE]&0x20) {
- //BassDrum
- cptr = &op[6];
- if (adlibreg[ARC_FEEDBACK+6]&1) {
- // additive synthesis
- if (cptr[9].op_state != OF_TYPE_OFF) {
- if (cptr[9].vibrato) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[9],vibval1[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],0,tremval1[i]);
-
- Bit32s chanval = cptr[9].cval*2;
- CHANVAL_OUT
- }
- }
- } else {
- // frequency modulation
- if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[0].op_state != OF_TYPE_OFF)) {
- if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
- vibval2 = vibval_var2;
- for (i=0;i<endsamples;i++)
- vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval2 = vibval_const;
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[0],vibval1[i]);
- opfuncs[cptr[0].op_state](&cptr[0]);
- operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
-
- operator_advance(&cptr[9],vibval2[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
-
- Bit32s chanval = cptr[9].cval*2;
- CHANVAL_OUT
- }
- }
- }
-
- //TomTom (j=8)
- if (op[8].op_state != OF_TYPE_OFF) {
- cptr = &op[8];
- if (cptr[0].vibrato) {
- vibval3 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval3[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval3 = vibval_const;
-
- if (cptr[0].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
- else tremval3 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[0],vibval3[i]);
- opfuncs[cptr[0].op_state](&cptr[0]); //TomTom
- operator_output(&cptr[0],0,tremval3[i]);
- Bit32s chanval = cptr[0].cval*2;
- CHANVAL_OUT
- }
- }
-
- //Snare/Hihat (j=7), Cymbal (j=8)
- if ((op[7].op_state != OF_TYPE_OFF) || (op[16].op_state != OF_TYPE_OFF) ||
- (op[17].op_state != OF_TYPE_OFF)) {
- cptr = &op[7];
- if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) {
- vibval2 = vibval_var2;
- for (i=0;i<endsamples;i++)
- vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval2 = vibval_const;
-
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
-
- cptr = &op[8];
- if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) {
- vibval4 = vibval_var2;
- for (i=0;i<endsamples;i++)
- vibval4[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval4 = vibval_const;
-
- if (cptr[9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table
- else tremval4 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance_drums(&op[7],vibval1[i],&op[7+9],vibval2[i],&op[8+9],vibval4[i]);
-
- opfuncs[op[7].op_state](&op[7]); //Hihat
- operator_output(&op[7],0,tremval1[i]);
-
- opfuncs[op[7+9].op_state](&op[7+9]); //Snare
- operator_output(&op[7+9],0,tremval2[i]);
-
- opfuncs[op[8+9].op_state](&op[8+9]); //Cymbal
- operator_output(&op[8+9],0,tremval4[i]);
-
- Bit32s chanval = (op[7].cval + op[7+9].cval + op[8+9].cval)*2;
- CHANVAL_OUT
- }
- }
- }
-
- Bitu max_channel = NUM_CHANNELS;
- #if defined(OPLTYPE_IS_OPL3)
- if ((adlibreg[0x105]&1)==0) max_channel = NUM_CHANNELS/2;
- #endif
- for (Bits cur_ch=max_channel-1; cur_ch>=0; cur_ch--) {
- // skip drum/percussion operators
- if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue;
-
- Bitu k = cur_ch;
- #if defined(OPLTYPE_IS_OPL3)
- if (cur_ch < 9) {
- cptr = &op[cur_ch];
- } else {
- cptr = &op[cur_ch+9]; // second set is operator18-operator35
- k += (-9+256); // second set uses registers 0x100 onwards
- }
- // check if this operator is part of a 4-op
- if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue;
- #else
- cptr = &op[cur_ch];
- #endif
-
- // check for FM/AM
- if (adlibreg[ARC_FEEDBACK+k]&1) {
- #if defined(OPLTYPE_IS_OPL3)
- if ((adlibreg[0x105]&1) && cptr->is_4op) {
- if (adlibreg[ARC_FEEDBACK+k+3]&1) {
- // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4)
- if (cptr[0].op_state != OF_TYPE_OFF) {
- if (cptr[0].vibrato) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[0],vibval1[i]);
- opfuncs[cptr[0].op_state](&cptr[0]);
- operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
-
- Bit32s chanval = cptr[0].cval;
- CHANVAL_OUT
- }
- }
-
- if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) {
- if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[9],vibval1[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],0,tremval1[i]);
-
- operator_advance(&cptr[3],0);
- opfuncs[cptr[3].op_state](&cptr[3]);
- operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
-
- Bit32s chanval = cptr[3].cval;
- CHANVAL_OUT
- }
- }
-
- if (cptr[3+9].op_state != OF_TYPE_OFF) {
- if (cptr[3+9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[3+9],0);
- opfuncs[cptr[3+9].op_state](&cptr[3+9]);
- operator_output(&cptr[3+9],0,tremval1[i]);
-
- Bit32s chanval = cptr[3+9].cval;
- CHANVAL_OUT
- }
- }
- } else {
- // AM-FM-style synthesis (op1[fb] + (op2 * op3 * op4))
- if (cptr[0].op_state != OF_TYPE_OFF) {
- if (cptr[0].vibrato) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[0],vibval1[i]);
- opfuncs[cptr[0].op_state](&cptr[0]);
- operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
-
- Bit32s chanval = cptr[0].cval;
- CHANVAL_OUT
- }
- }
-
- if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
- if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
- if (cptr[3+9].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
- else tremval3 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[9],vibval1[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],0,tremval1[i]);
-
- operator_advance(&cptr[3],0);
- opfuncs[cptr[3].op_state](&cptr[3]);
- operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]);
-
- operator_advance(&cptr[3+9],0);
- opfuncs[cptr[3+9].op_state](&cptr[3+9]);
- operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval3[i]);
-
- Bit32s chanval = cptr[3+9].cval;
- CHANVAL_OUT
- }
- }
- }
- continue;
- }
- #endif
- // 2op additive synthesis
- if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
- if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
- vibval2 = vibval_var2;
- for (i=0;i<endsamples;i++)
- vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval2 = vibval_const;
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- // carrier1
- operator_advance(&cptr[0],vibval1[i]);
- opfuncs[cptr[0].op_state](&cptr[0]);
- operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
-
- // carrier2
- operator_advance(&cptr[9],vibval2[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],0,tremval2[i]);
-
- Bit32s chanval = cptr[9].cval + cptr[0].cval;
- CHANVAL_OUT
- }
- } else {
- #if defined(OPLTYPE_IS_OPL3)
- if ((adlibreg[0x105]&1) && cptr->is_4op) {
- if (adlibreg[ARC_FEEDBACK+k+3]&1) {
- // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4))
- if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) {
- if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
- vibval2 = vibval_var2;
- for (i=0;i<endsamples;i++)
- vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval2 = vibval_const;
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[0],vibval1[i]);
- opfuncs[cptr[0].op_state](&cptr[0]);
- operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
-
- operator_advance(&cptr[9],vibval2[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
-
- Bit32s chanval = cptr[9].cval;
- CHANVAL_OUT
- }
- }
-
- if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
- if (cptr[3].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[3+9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[3],0);
- opfuncs[cptr[3].op_state](&cptr[3]);
- operator_output(&cptr[3],0,tremval1[i]);
-
- operator_advance(&cptr[3+9],0);
- opfuncs[cptr[3+9].op_state](&cptr[3+9]);
- operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval2[i]);
-
- Bit32s chanval = cptr[3+9].cval;
- CHANVAL_OUT
- }
- }
-
- } else {
- // FM-FM-style synthesis (op1[fb] * op2 * op3 * op4)
- if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF) ||
- (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) {
- if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
- vibval2 = vibval_var2;
- for (i=0;i<endsamples;i++)
- vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval2 = vibval_const;
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
- if (cptr[3].tremolo) tremval3 = trem_lut; // tremolo enabled, use table
- else tremval3 = tremval_const;
- if (cptr[3+9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table
- else tremval4 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- operator_advance(&cptr[0],vibval1[i]);
- opfuncs[cptr[0].op_state](&cptr[0]);
- operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
-
- operator_advance(&cptr[9],vibval2[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
-
- operator_advance(&cptr[3],0);
- opfuncs[cptr[3].op_state](&cptr[3]);
- operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval3[i]);
-
- operator_advance(&cptr[3+9],0);
- opfuncs[cptr[3+9].op_state](&cptr[3+9]);
- operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval4[i]);
-
- Bit32s chanval = cptr[3+9].cval;
- CHANVAL_OUT
- }
- }
- }
- continue;
- }
- #endif
- // 2op frequency modulation
- if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue;
- if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) {
- vibval1 = vibval_var1;
- for (i=0;i<endsamples;i++)
- vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval1 = vibval_const;
- if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) {
- vibval2 = vibval_var2;
- for (i=0;i<endsamples;i++)
- vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC);
- } else vibval2 = vibval_const;
- if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table
- else tremval1 = tremval_const;
- if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table
- else tremval2 = tremval_const;
-
- // calculate channel output
- for (i=0;i<endsamples;i++) {
- // modulator
- operator_advance(&cptr[0],vibval1[i]);
- opfuncs[cptr[0].op_state](&cptr[0]);
- operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]);
-
- // carrier
- operator_advance(&cptr[9],vibval2[i]);
- opfuncs[cptr[9].op_state](&cptr[9]);
- operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]);
-
- Bit32s chanval = cptr[9].cval;
- CHANVAL_OUT
- }
- }
- }
-
- #if defined(OPLTYPE_IS_OPL3)
- if (adlibreg[0x105]&1) {
- // convert to 16bit samples (stereo)
- for (i=0;i<endsamples;i++) {
- clipit16(outbufl[i],sndptr++);
- clipit16(outbufr[i],sndptr++);
- }
- } else {
- // convert to 16bit samples (mono)
- for (i=0;i<endsamples;i++) {
- clipit16(outbufl[i],sndptr++);
- clipit16(outbufl[i],sndptr++);
- }
- }
- #else
- // convert to 16bit samples
- for (i=0;i<endsamples;i++)
- clipit16(outbufl[i],sndptr++);
- #endif
-
- }
- }
|