#include #include #define _USE_MATH_DEFINES #include #if !defined(__MINGW32__) && !defined(__EMSCRIPTEN__) #if (defined(_M_IX86) || defined(__i386__) || defined(_M_X64) || defined(__amd64__)) #include #define RESAMPLER_SSE #endif #endif #ifdef _MSC_VER #define ALIGNED _declspec(align(16)) #else #define ALIGNED __attribute__((aligned(16))) #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #include "resampler.h" enum { RESAMPLER_SHIFT = 10 }; enum { RESAMPLER_RESOLUTION = 1 << RESAMPLER_SHIFT }; enum { SINC_WIDTH = 16 }; enum { SINC_SAMPLES = RESAMPLER_RESOLUTION * SINC_WIDTH }; enum { CUBIC_SAMPLES = RESAMPLER_RESOLUTION * 4 }; ALIGNED static float cubic_lut[CUBIC_SAMPLES]; static float sinc_lut[SINC_SAMPLES + 1]; static float window_lut[SINC_SAMPLES + 1]; enum { resampler_buffer_size = SINC_WIDTH * 4 }; typedef struct resampler { int write_pos, write_filled; int read_pos, read_filled; unsigned int phase; unsigned int phase_inc; unsigned int inv_phase; unsigned int inv_phase_inc; unsigned char quality; signed char delay_added; signed char delay_removed; float last_amp; float accumulator; float buffer_in[resampler_buffer_size * 2]; float buffer_out[resampler_buffer_size + SINC_WIDTH * 2 - 1]; } resampler; static int fEqual(const float b, const float a) { return fabs(a - b) < 1.0e-6; } static float sinc(float x) { return fEqual(x, 0.0f) ? 1.0f : (float)(sin(x * M_PI) / (x * M_PI)); } typedef int (*resampler_run)(resampler *, float **, float *); #ifdef RESAMPLER_SSE # ifdef _MSC_VER # include # pragma warning(disable:4244) # elif defined(__clang__) || defined(__GNUC__) static inline void __cpuid(int *data, int selector) { # if defined(__PIC__) && defined(__i386__) asm("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi" : "=a" (data[0]), "=S" (data[1]), "=c" (data[2]), "=d" (data[3]) : "0" (selector)); # elif defined(__PIC__) && defined(__amd64__) asm("xchg{q} {%%}rbx, %q1; cpuid; xchg{q} {%%}rbx, %q1" : "=a" (data[0]), "=&r" (data[1]), "=c" (data[2]), "=d" (data[3]) : "0" (selector)); # else asm("cpuid" : "=a" (data[0]), "=b" (data[1]), "=c" (data[2]), "=d" (data[3]) : "0" (selector)); # endif } # else # define __cpuid(a,b) memset((a), 0, sizeof(int) * 4) # endif static int query_cpu_feature_sse() { int buffer[4]; __cpuid(buffer,1); if ((buffer[3]&(1<<25)) == 0) return 0; return 1; } static int resampler_run_blep_sse(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 1; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; int inv_phase = r->inv_phase; int inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_RESOLUTION; do { // accumulate in extended precision float kernel_sum = 0.0; __m128 kernel[SINC_WIDTH / 2]; __m128 temp1, temp2; __m128 samplex; float sample; float *kernelf = (float*)(&kernel); int i = SINC_WIDTH; if (out + SINC_WIDTH * 2 > out_end) break; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int abs_pos = abs(inv_phase - pos); kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs_pos] * window_lut[abs_pos]; } sample = *in++ - last_amp; last_amp += sample; sample /= kernel_sum; samplex = _mm_set1_ps(sample); for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = _mm_load_ps((const float *)(kernel + i)); temp1 = _mm_mul_ps(temp1, samplex); temp2 = _mm_loadu_ps((const float *)out + i * 4); temp1 = _mm_add_ps(temp1, temp2); _mm_storeu_ps((float *)out + i * 4, temp1); } inv_phase += inv_phase_inc; out += inv_phase >> RESAMPLER_SHIFT; inv_phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } static int resampler_run_cubic_sse(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 4; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; int phase = r->phase; int phase_inc = r->phase_inc; do { __m128 temp1, temp2; __m128 samplex = _mm_setzero_ps(); if (out >= out_end) break; temp1 = _mm_loadu_ps((const float *)(in)); temp2 = _mm_load_ps((const float *)(cubic_lut + phase * 4)); temp1 = _mm_mul_ps(temp1, temp2); samplex = _mm_add_ps(samplex, temp1); temp1 = _mm_movehl_ps(temp1, samplex); samplex = _mm_add_ps(samplex, temp1); temp1 = samplex; temp1 = _mm_shuffle_ps(temp1, samplex, _MM_SHUFFLE(0, 0, 0, 1)); samplex = _mm_add_ps(samplex, temp1); _mm_store_ss(out, samplex); ++out; phase += phase_inc; in += phase >> RESAMPLER_SHIFT; phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } static int resampler_run_sinc_sse(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= SINC_WIDTH * 2; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; int phase = r->phase; int phase_inc = r->phase_inc; int step = phase_inc > RESAMPLER_RESOLUTION ? RESAMPLER_RESOLUTION * RESAMPLER_RESOLUTION / phase_inc : RESAMPLER_RESOLUTION; int window_step = RESAMPLER_RESOLUTION; do { // accumulate in extended precision float kernel_sum = 0.0; __m128 kernel[SINC_WIDTH / 2]; __m128 temp1, temp2; __m128 samplex = _mm_setzero_ps(); float *kernelf = (float*)(&kernel); int i = SINC_WIDTH; int phase_adj = phase * step / RESAMPLER_RESOLUTION; if (out >= out_end) break; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernelf[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase - window_pos)]; } for (i = 0; i < SINC_WIDTH / 2; ++i) { temp1 = _mm_loadu_ps((const float *)(in + i * 4)); temp2 = _mm_load_ps((const float *)(kernel + i)); temp1 = _mm_mul_ps(temp1, temp2); samplex = _mm_add_ps(samplex, temp1); } kernel_sum = 1.0f / kernel_sum; temp1 = _mm_movehl_ps(temp1, samplex); samplex = _mm_add_ps(samplex, temp1); temp1 = samplex; temp1 = _mm_shuffle_ps(temp1, samplex, _MM_SHUFFLE(0, 0, 0, 1)); samplex = _mm_add_ps(samplex, temp1); temp1 = _mm_set_ss(kernel_sum); samplex = _mm_mul_ps(samplex, temp1); _mm_store_ss(out, samplex); ++out; phase += phase_inc; in += phase >> RESAMPLER_SHIFT; phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } #endif static int resampler_run_zoh(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 1; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; int phase = r->phase; int phase_inc = r->phase_inc; do { float sample; if (out >= out_end) break; sample = *in; *out++ = sample; phase += phase_inc; in += phase >> RESAMPLER_SHIFT; phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->phase = (unsigned short)phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } static int resampler_run_blep_c(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 1; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; float last_amp = r->last_amp; int inv_phase = r->inv_phase; int inv_phase_inc = r->inv_phase_inc; const int step = RESAMPLER_RESOLUTION; do { float kernel[SINC_WIDTH * 2], kernel_sum = 0.0; int i = SINC_WIDTH; float sample; if (out + SINC_WIDTH * 2 > out_end) break; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int abs_pos = abs(inv_phase - pos); kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs_pos] * window_lut[abs_pos]; } sample = *in++ - last_amp; last_amp += sample; sample /= kernel_sum; for (i = 0; i < SINC_WIDTH * 2; ++i) out[i] += sample * kernel[i]; inv_phase += inv_phase_inc; out += inv_phase >> RESAMPLER_SHIFT; inv_phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->inv_phase = inv_phase; r->last_amp = last_amp; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } static int resampler_run_linear(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 2; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; int phase = r->phase; int phase_inc = r->phase_inc; do { float sample; if (out >= out_end) break; sample = in[0] + (in[1] - in[0]) * ((float)phase / RESAMPLER_RESOLUTION); *out++ = sample; phase += phase_inc; in += phase >> RESAMPLER_SHIFT; phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } static int resampler_run_cubic_c(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= 4; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; int phase = r->phase; int phase_inc = r->phase_inc; do { float * kernel; int i; float sample; if (out >= out_end) break; kernel = cubic_lut + phase * 4; for (sample = 0, i = 0; i < 4; ++i) sample += in[i] * kernel[i]; *out++ = sample; phase += phase_inc; in += phase >> RESAMPLER_SHIFT; phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } static int resampler_run_sinc_c(resampler * r, float ** out_, float * out_end) { int in_size = r->write_filled; float const* in_ = r->buffer_in + resampler_buffer_size + r->write_pos - r->write_filled; int used = 0; in_size -= SINC_WIDTH * 2; if (in_size > 0) { float* out = *out_; float const* in = in_; float const* const in_end = in + in_size; int phase = r->phase; int phase_inc = r->phase_inc; int step = phase_inc > RESAMPLER_RESOLUTION ? RESAMPLER_RESOLUTION * RESAMPLER_RESOLUTION / phase_inc : RESAMPLER_RESOLUTION; int window_step = RESAMPLER_RESOLUTION; do { float kernel[SINC_WIDTH * 2], kernel_sum = 0.0; int i = SINC_WIDTH; int phase_adj = phase * step / RESAMPLER_RESOLUTION; float sample; if (out >= out_end) break; for (; i >= -SINC_WIDTH + 1; --i) { int pos = i * step; int window_pos = i * window_step; kernel_sum += kernel[i + SINC_WIDTH - 1] = sinc_lut[abs(phase_adj - pos)] * window_lut[abs(phase - window_pos)]; } for (sample = 0, i = 0; i < SINC_WIDTH * 2; ++i) sample += in[i] * kernel[i]; *out++ = (float)(sample / kernel_sum); phase += phase_inc; in += phase >> RESAMPLER_SHIFT; phase &= RESAMPLER_RESOLUTION - 1; } while (in < in_end); r->phase = phase; *out_ = out; used = (int)(in - in_); r->write_filled -= used; } return used; } static resampler_run resampler_run_blep = resampler_run_blep_c; static resampler_run resampler_run_cubic = resampler_run_cubic_c; static resampler_run resampler_run_sinc = resampler_run_sinc_c; void resampler_init(void) { unsigned i; double dx = (float)(SINC_WIDTH) / SINC_SAMPLES, x = 0.0; for (i = 0; i < SINC_SAMPLES + 1; ++i, x += dx) { float y = x / SINC_WIDTH; #if 0 // Blackman float window = 0.42659 - 0.49656 * cos(M_PI + M_PI * y) + 0.076849 * cos(2.0 * M_PI * y); #elif 1 // Nuttal 3 term float window = 0.40897 + 0.5 * cos(M_PI * y) + 0.09103 * cos(2.0 * M_PI * y); #elif 0 // C.R.Helmrich's 2 term window float window = 0.79445 * cos(0.5 * M_PI * y) + 0.20555 * cos(1.5 * M_PI * y); #elif 0 // Lanczos float window = sinc(y); #endif sinc_lut[i] = fabs(x) < SINC_WIDTH ? sinc(x) : 0.0; window_lut[i] = window; } dx = 1.0 / (float)(RESAMPLER_RESOLUTION); x = 0.0; for (i = 0; i < RESAMPLER_RESOLUTION; ++i, x += dx) { cubic_lut[i*4] = (float)(-0.5 * x * x * x + x * x - 0.5 * x); cubic_lut[i*4+1] = (float)( 1.5 * x * x * x - 2.5 * x * x + 1.0); cubic_lut[i*4+2] = (float)(-1.5 * x * x * x + 2.0 * x * x + 0.5 * x); cubic_lut[i*4+3] = (float)( 0.5 * x * x * x - 0.5 * x * x); } #ifdef RESAMPLER_SSE if (query_cpu_feature_sse()) { resampler_run_blep = resampler_run_blep_sse; resampler_run_cubic = resampler_run_cubic_sse; resampler_run_sinc = resampler_run_sinc_sse; } #endif } void * resampler_create(void) { resampler * r = ( resampler * ) malloc( sizeof(resampler) ); if ( !r ) return 0; r->write_pos = SINC_WIDTH - 1; r->write_filled = 0; r->read_pos = 0; r->read_filled = 0; r->phase = 0; r->phase_inc = 0; r->inv_phase = 0; r->inv_phase_inc = 0; r->quality = RESAMPLER_QUALITY_MAX; r->delay_added = -1; r->delay_removed = -1; r->last_amp = 0; r->accumulator = 0; memset( r->buffer_in, 0, sizeof(r->buffer_in) ); memset( r->buffer_out, 0, sizeof(r->buffer_out) ); return r; } void resampler_delete(void * _r) { free( _r ); } void * resampler_dup(const void * _r) { const resampler * r_in = ( const resampler * ) _r; resampler * r_out = ( resampler * ) malloc( sizeof(resampler) ); if ( !r_out ) return 0; r_out->write_pos = r_in->write_pos; r_out->write_filled = r_in->write_filled; r_out->read_pos = r_in->read_pos; r_out->read_filled = r_in->read_filled; r_out->phase = r_in->phase; r_out->phase_inc = r_in->phase_inc; r_out->inv_phase = r_in->inv_phase; r_out->inv_phase_inc = r_in->inv_phase_inc; r_out->quality = r_in->quality; r_out->delay_added = r_in->delay_added; r_out->delay_removed = r_in->delay_removed; r_out->last_amp = r_in->last_amp; r_out->accumulator = r_in->accumulator; memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) ); memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) ); return r_out; } void resampler_dup_inplace(void *_d, const void *_s) { const resampler * r_in = ( const resampler * ) _s; resampler * r_out = ( resampler * ) _d; r_out->write_pos = r_in->write_pos; r_out->write_filled = r_in->write_filled; r_out->read_pos = r_in->read_pos; r_out->read_filled = r_in->read_filled; r_out->phase = r_in->phase; r_out->phase_inc = r_in->phase_inc; r_out->inv_phase = r_in->inv_phase; r_out->inv_phase_inc = r_in->inv_phase_inc; r_out->quality = r_in->quality; r_out->delay_added = r_in->delay_added; r_out->delay_removed = r_in->delay_removed; r_out->last_amp = r_in->last_amp; r_out->accumulator = r_in->accumulator; memcpy( r_out->buffer_in, r_in->buffer_in, sizeof(r_in->buffer_in) ); memcpy( r_out->buffer_out, r_in->buffer_out, sizeof(r_in->buffer_out) ); } void resampler_set_quality(void *_r, int quality) { resampler * r = ( resampler * ) _r; if (quality < RESAMPLER_QUALITY_MIN) quality = RESAMPLER_QUALITY_MIN; else if (quality > RESAMPLER_QUALITY_MAX) quality = RESAMPLER_QUALITY_MAX; if ( r->quality != quality ) { if ( quality == RESAMPLER_QUALITY_BLEP || r->quality == RESAMPLER_QUALITY_BLEP ) { r->read_pos = 0; r->read_filled = 0; r->last_amp = 0; r->accumulator = 0; memset( r->buffer_out, 0, sizeof(r->buffer_out) ); } r->delay_added = -1; r->delay_removed = -1; } r->quality = (unsigned char)quality; } int resampler_get_free_count(void *_r) { resampler * r = ( resampler * ) _r; return resampler_buffer_size - r->write_filled; } static int resampler_min_filled(resampler *r) { switch (r->quality) { default: case RESAMPLER_QUALITY_ZOH: case RESAMPLER_QUALITY_BLEP: return 1; case RESAMPLER_QUALITY_LINEAR: return 2; case RESAMPLER_QUALITY_CUBIC: return 4; case RESAMPLER_QUALITY_SINC: return SINC_WIDTH * 2; } } static int resampler_input_delay(resampler *r) { switch (r->quality) { default: case RESAMPLER_QUALITY_ZOH: case RESAMPLER_QUALITY_BLEP: case RESAMPLER_QUALITY_LINEAR: return 0; case RESAMPLER_QUALITY_CUBIC: return 1; case RESAMPLER_QUALITY_SINC: return SINC_WIDTH - 1; } } static int resampler_output_delay(resampler *r) { switch (r->quality) { default: case RESAMPLER_QUALITY_ZOH: case RESAMPLER_QUALITY_LINEAR: case RESAMPLER_QUALITY_CUBIC: case RESAMPLER_QUALITY_SINC: return 0; case RESAMPLER_QUALITY_BLEP: return SINC_WIDTH - 1; } } int resampler_ready(void *_r) { resampler * r = ( resampler * ) _r; return r->write_filled > resampler_min_filled(r); } void resampler_clear(void *_r) { resampler * r = ( resampler * ) _r; r->write_pos = SINC_WIDTH - 1; r->write_filled = 0; r->read_pos = 0; r->read_filled = 0; r->phase = 0; r->delay_added = -1; r->delay_removed = -1; memset(r->buffer_in, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0])); memset(r->buffer_in + resampler_buffer_size, 0, (SINC_WIDTH - 1) * sizeof(r->buffer_in[0])); if (r->quality == RESAMPLER_QUALITY_BLEP) memset(r->buffer_out, 0, sizeof(r->buffer_out)); } void resampler_set_rate(void *_r, double new_factor) { resampler * r = ( resampler * ) _r; r->phase_inc = (int)( new_factor * RESAMPLER_RESOLUTION ); new_factor = 1.0 / new_factor; r->inv_phase_inc = (int)( new_factor * RESAMPLER_RESOLUTION ); } void resampler_write_sample(void *_r, short s) { resampler * r = ( resampler * ) _r; if ( r->delay_added < 0 ) { r->delay_added = 0; r->write_filled = resampler_input_delay( r ); } if ( r->write_filled < resampler_buffer_size ) { float s32 = s; s32 *= 256.0; r->buffer_in[ r->write_pos ] = s32; r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32; ++r->write_filled; r->write_pos = ( r->write_pos + 1 ) % resampler_buffer_size; } } void resampler_write_sample_fixed(void *_r, int s, unsigned char depth) { resampler * r = ( resampler * ) _r; if ( r->delay_added < 0 ) { r->delay_added = 0; r->write_filled = resampler_input_delay( r ); } if ( r->write_filled < resampler_buffer_size ) { float s32 = s; s32 /= (double)(1 << (depth - 1)); r->buffer_in[ r->write_pos ] = s32; r->buffer_in[ r->write_pos + resampler_buffer_size ] = s32; ++r->write_filled; r->write_pos = ( r->write_pos + 1 ) % resampler_buffer_size; } } static void resampler_fill(resampler * r) { int min_filled = resampler_min_filled(r); int quality = r->quality; while ( r->write_filled > min_filled && r->read_filled < resampler_buffer_size ) { int write_pos = ( r->read_pos + r->read_filled ) % resampler_buffer_size; int write_size = resampler_buffer_size - write_pos; float * out = r->buffer_out + write_pos; if ( write_size > ( resampler_buffer_size - r->read_filled ) ) write_size = resampler_buffer_size - r->read_filled; switch (quality) { case RESAMPLER_QUALITY_ZOH: resampler_run_zoh( r, &out, out + write_size ); break; case RESAMPLER_QUALITY_BLEP: { int used; int write_extra = 0; if ( write_pos >= r->read_pos ) write_extra = r->read_pos; if ( write_extra > SINC_WIDTH * 2 - 1 ) write_extra = SINC_WIDTH * 2 - 1; memcpy( r->buffer_out + resampler_buffer_size, r->buffer_out, write_extra * sizeof(r->buffer_out[0]) ); used = resampler_run_blep( r, &out, out + write_size + write_extra ); memcpy( r->buffer_out, r->buffer_out + resampler_buffer_size, write_extra * sizeof(r->buffer_out[0]) ); if (!used) return; break; } case RESAMPLER_QUALITY_LINEAR: resampler_run_linear( r, &out, out + write_size ); break; case RESAMPLER_QUALITY_CUBIC: resampler_run_cubic( r, &out, out + write_size ); break; case RESAMPLER_QUALITY_SINC: resampler_run_sinc( r, &out, out + write_size ); break; } r->read_filled += out - r->buffer_out - write_pos; } } static void resampler_fill_and_remove_delay(resampler * r) { resampler_fill( r ); if ( r->delay_removed < 0 ) { int delay = resampler_output_delay( r ); r->delay_removed = 0; while ( delay-- ) resampler_remove_sample( r ); } } int resampler_get_sample_count(void *_r) { resampler * r = ( resampler * ) _r; if ( r->read_filled < 1 && (r->quality != RESAMPLER_QUALITY_BLEP || r->inv_phase_inc)) resampler_fill_and_remove_delay( r ); return r->read_filled; } int resampler_get_sample(void *_r) { resampler * r = ( resampler * ) _r; if ( r->read_filled < 1 && r->phase_inc) resampler_fill_and_remove_delay( r ); if ( r->read_filled < 1 ) return 0; if ( r->quality == RESAMPLER_QUALITY_BLEP ) return (int)(r->buffer_out[ r->read_pos ] + r->accumulator); else return (int)r->buffer_out[ r->read_pos ]; } void resampler_remove_sample(void *_r) { resampler * r = ( resampler * ) _r; if ( r->read_filled > 0 ) { if ( r->quality == RESAMPLER_QUALITY_BLEP ) { r->accumulator += r->buffer_out[ r->read_pos ]; r->buffer_out[ r->read_pos ] = 0; r->accumulator -= r->accumulator * (1.0 / 8192.0); if (fabs(r->accumulator) < 1e-20) r->accumulator = 0; } --r->read_filled; r->read_pos = ( r->read_pos + 1 ) % resampler_buffer_size; } } /* Get a 16-bit sample with saturation */ short resampler_get_and_remove_sample(void *_r) { int sample = resampler_get_sample(_r) >> 8; resampler_remove_sample(_r); if (sample > 32767) return 32767; else if (sample < -32768) return -32768; else return (short)sample; }